Sunday, November 29, 2015

INNOVATION: Is There a Crisis in Computer-Science Education?

From the Chronicle of Higher Education:

Furthermore, to focus only on computer-science majors misses a larger point. As Ms. Raja argues in her essay, simply teaching kids how to code shouldn’t be the only goal. Just as important—or perhaps more so—is teaching kids how to think like a computer programmer—what is called “computational thinking.” She highlights some current efforts to teach computational thinking in elementary and secondary schools, particularly to girls and members of minority groups, who remain woefully underrepresented among computer-science degree-holders and professional computer programmers.

And while teaching computational thinking may result in more computer-science degrees, the more important contribution it will make is giving more people across all fields the ability to solve problems like a computer scientist and to speak the language of computer programming.

As Ms. Raja notes, those are skills everyone should have access to, regardless of their major.

Thursday, November 26, 2015

Pizza, Panini and the Periodic Table

Breaking out of the long break in blogging with a link to this article in Swarajya magazine. Subhash Kak in Swarajya:

Mendeleev was born at Tobolsk, Siberia, and educated in St. Petersburg. He was appointed to a professorship in St. Petersburg 1863 and in 1866 he succeeded to the Chair of Chemistry in the University. He is best known for his work on the periodic table, which was soon recognized since he predicted the existence and properties of new elements and indicated that some accepted atomic weights of the then known elements were in error. His periodic table formulated in 1869 remains one of the major conceptual advancements in the history of science.

Mendeleev arranged in the table the 63 known elements based on atomic weight, which he published in his article “On the Relationship of the Properties of the Elements to their Atomic Weights”. He left space for new elements, and predicted three yet-to-be-discovered elements including eka-silicon and eka-boron. The earlier attempts at classification had considered some two-dimensional schemes, but they remained arbitrary in their conception. Mendeleev’s main contribution was his insistence that the two-dimensional should be systematic and comprehensive. In this he appears to have been inspired by the systematic arrangement of Sanskrit sounds in the standard akṣara-mālā, which he indirectly acknowledges in his naming scheme.

A slice of pizza for anyone who comes up with another fine article like this is being proposed (due to the impracticality of sending pizza over long distances, this is still at a proposal stage. ;)) Pizza, anyone?